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a b s t r a c t

The apparent diffusion coefficient (ADC) obtained from NMR measurements is modelled for diffusion in a
compartment restricted by an impermeable boundary. For a given pulse sequence, the ADC can be deter-
mined from the connected velocity autocorrelation function (the second-order velocity cumulant), which
we show can be expressed as a double surface integral over the boundary, involving the probability for
molecules to diffuse from one boundary point to another. There is no restriction on the geometry of the
boundary. This result allows a fast calculation of the ADC for an arbitrary time course of the diffusion-sen-
sitizing gradient. Explicit examples are given for diffusion within three basic geometries for different
pulse sequences. The ADCs measured with the Stejskal–Tanner pulse sequence and a more realistic pulse
sequence with slice selection gradient and eddy current compensation are found to yield almost identical
results. The application of the results are discussed in relation to determination of the microscopic struc-
ture of brain white matter.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Diffusion-weighted MRI probes cellular structure of living tis-
sue. However, the detailed relation between the biological
microstructure and the acquired MR signal is extremely complex
and the study of this relation remains an area of active
research.

Considerable insight into this field may be gleaned from the
exploration of the structure of porous media by diffusion-
weighted MRI [1–3]. In such media, an NMR visible fluid is con-
fined in an impermeable NMR-invisible matrix. The physics
underlying diffusion and the MRI signal is well understood in this
context [4]. In particular, the short-time behavior of the apparent
diffusion coefficient (ADC) can be related to the geometry of the
matrix:

D ¼ D0 1� c �
ffiffiffiffiffiffiffiffiffi
D0T

p S
V

� �
; ð1Þ

where S and V are the surface and volume of the pore space, D0 is
the diffusion coefficient in the bulk fluid, T is the diffusion time,
and c is a constant depending on the pulse sequence [1–3]. By vir-
tue of the central limit theorem, the diffusion takes its free form
again for long times, with a reduced ADC. The reduction is de-
scribed by the so-called tortuosity, k, defined through D ¼ D0=k

2.
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The diffusion-weighted signal in biological tissue is more diffi-
cult to analyze, for experimentally relevant diffusion times, since
many of the simplifications applicable to porous materials do not
apply. In most tissue types, NMR visible water is present inside
and outside cells. Furthermore, the majority of biological mem-
branes are penetrable for water molecules, and there are few com-
partments with free diffusion. For example, the medium
surrounding neuronal fibers consists of glia cells and an abundance
of macro-molecules, and the diffusion in such a medium is hin-
dered. This issue was considered in Ref. [5], where a short-time
expression for the ADC was derived for molecules diffusing in a
heterogeneous medium with restrictive boundaries in one-dimen-
sion. No simplifying assumptions were made about the diffusion in
the bulk medium. The results ruled out a simple interpretation of
the diffusion-weighted signal in the spirit of Eq. (1).

The dependence of the ADC on the measurement technique
presents another problem for the interpretation of the diffusion-
weighted signal. In the narrow pulse approximation, with its
unambiguous definition of the diffusion time and the Fourier rela-
tion between the spin displacement distribution and the NMR sig-
nal, the ADC is simply related to the mean square displacement of
individual spins. However, the narrow pulse approximation is
rarely achievable with the gradient systems of clinical scanners,
and for the more complicated pulse sequences employed in
practice, the relation of the ADC to microscopic variables is less di-
rect. For these reasons, it is important to develop methods for the
calculation of the ADCs for different realistic pulse sequences.
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The analysis in Ref. [5] was based on a microscopic determina-
tion of the ADC in terms of an autocorrelation function of molecu-
lar velocity (the second-order cumulant) [6]. In the present paper,
we extend this approach in the context of diffusion in a homoge-
neous medium restricted by impermeable boundaries (hereafter
referred to as a pore), to derive an expression for the second-order
velocity cumulant for arbitrary pulse sequences and a three-
dimensional geometry, in terms of the diffusion propagator inside
the pore. We find that the second-order velocity cumulant can be
expressed as a double surface integral of the diffusion propagator.
This expression is related to existing expressions for the ADC, e.g.,
in Refs. [7,2], but the new insight makes both analytical and
numerical calculations less demanding, enabling in particular the
straightforward calculation of the ADC for an arbitrary form of
the diffusion-sensitizing gradient pulse. The result is used to com-
pare the ADCs found with different pulse sequences in the geome-
try of a slab, a cylinder and a sphere.

The paper is organized as follows: in the next section, we con-
sider the diffusion-weighted signal at small b-values and define
the ADC. We then find a three-dimensional expression for the sec-
ond-order velocity cumulant which depends on the diffusion prop-
agator at the surface only. The applicability of this expression is
demonstrated in three geometries: diffusion between imperme-
able walls, within an impermeable cylinder and within an imper-
meable sphere. For these geometries, the ADC is derived and
discussed for three different pulse sequences. The discussion fol-
lowing in Section 4 focuses on the expression found for the sec-
ond-order velocity cumulant and a comparison between the ADC
results for the different pulse sequences. In Appendix A, two alter-
native ways of achieving the expression for the second-order
cumulant are briefly outlined. For convenience, expressions for
the diffusion propagator in the three geometries are given in
Appendix B.

2. Theory

2.1. The apparent diffusion coefficient

In the limit of a weak diffusion weighting in the imaging se-
quence ðb! 0Þ, the normalized NMR signal, S, from a sample can
be written in terms of the second-order velocity cumulant, uð2Þ:

ln S � �1
2

X
ij

Z T

0
uð2Þij ðt1; t2ÞGiðt1ÞGjðt2Þdt1 dt2; ð2Þ

which is the first term in the cumulant expansion of the signal and
can be obtained by partial integration of the expression given by
Callaghan in Ref. [6, Chapter 6]. The summation indices i and j count
the three vector components and GðtÞ is the integral of the gradient
of the Larmor frequency, gðtÞ, applied for the diffusion weighting:

GðtÞ ¼
Z t

0
gðt1Þdt1 ¼ c

Z t

0
rBzðt1Þdt1: ð3Þ

The condition for echo formation is GðTÞ ¼ Gð0Þ ¼ 0. A refocus-
ing pulse applied at a time point t0 is taken into account by chang-
ing the sign of gðtÞ for t < t0.

The second-order velocity cumulant is an autocorrelation
function

uð2Þij ðt1; t2Þ ¼ hviðt1Þvjðt2Þi � hviðt1Þihvjðt2Þi; ð4Þ

where the angular brackets denote averaging over all diffusing mol-
ecules contributing to the signal. When bulk flow is absent, the
velocity cumulants depend on time differences only (stationarity),
which is assumed below. In the case of free diffusion in a homoge-
neous medium, the second-order velocity cumulant takes the form
[6], chapt. 6, [5]
uð2Þij ðt1; t2Þ ¼ 2D0dijdðt2 � t1Þ: ð5Þ

The signal in Eq. (2) is proportional to the squared amplitude of
the gradient and is often written in terms of the b-factor, defined
by

bij ¼
Z TE

0
GiðtÞGjðtÞdt: ð6Þ

The conventional definition of the diffusion tensor using Eqs. (2)
and (5) implies taking the limit of small b-factors when considering
diffusion in heterogeneous media. The ADC tensor, D, is defined
through

ln S ’ �
X

ij

bijDij; ð7Þ

for a small diffusion weighting. In order to determine the indepen-
dent components of the ADC tensor, the signal must be measured
with diffusion gradients applied along at least six non-collinear
directions. The issue of calculating the diffusion tensor from the dif-
fusion-weighted signal is discussed, e.g., in Ref. [8]. In the simple
geometries considered here, the diagonalization of all tensors in-
volved is trivial and the diffusion tensor can be found by a simple
division by the eigenvalues of the b-matrix. When the diffusion
weighting is applied only in one direction, e.g., the x-direction, as
is assumed in the following examples, the ADC takes the form

D ¼ 1
2bxx

Z T

0
uð2Þxx ðt2 � t1ÞGxðt2ÞGxðt1Þdt1 dt2: ð8Þ

The index xx on D has been omitted for ease of notation. It follows
from Eq. (8) that the ADC depends on the specific shape of GðtÞ. This
dependence disappears only in a homogeneous medium, where uð2Þ

takes the form given in Eq. (5).
In the following we determine the second-order velocity cumu-

lant uð2Þ in order to calculate the apparent diffusion coefficient for
different pulse sequences.

2.2. Second-order velocity cumulant

In this section, we consider the second-order velocity cumulant
for diffusion in three-dimensions in a pore of arbitrary geometry
with reflecting boundaries.

The velocity cumulant in Eq. (8) is calculated by straightforward
discretization of the derivative in the definition of velocity. Sup-
pose that the position of all molecules is measured at a time t after
which they are labelled, and the positions are measured again after
an infinitesimally short time Dt. This allows calculation of the
instantaneous velocities of the molecules. We define a velocity
operator as

Vi � lim
Dt!0

r2i � r1i

Dt
wðr2; r1;DtÞ; ð9Þ

where the diffusion propagator, w, is the solution to the diffusion
equation,

owðr2; r1; tÞ
ot

¼ D0r2wðr2; r1; tÞ ð10Þ

with the initial condition

wðr2; r1;0Þ ¼ d3ðr2 � r1Þ ð11Þ

and with the reflecting boundary condition

D0n̂ � rwðr2; r1; tÞjr�X ¼ 0; ð12Þ

where X is the surface and n̂ an outward pointing normal to the sur-
face. For very short times, the diffusion propagator is not influenced
by the boundaries and keeps its initial form, Eq. (11), and the veloc-
ity operator in Eq. (9) takes the form



Fig. 1. Sequence of radio frequency and gradient pulses in a pulsed gradient spin–
echo (Stejskal–Tanner) experiment. D is the duration between the two gradient
pulses, d the duration of each gradient pulse and g the amplitude of these pulses.
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Vi ¼ �2D0
o

or2i
d3ðr2 � r1Þ: ð13Þ

This is derived by integrating the velocity operator with an arbitrary
smooth function f ðr2Þ. This function is expanded in a power series
from which only the linear term contributes in the limit of vanish-
ing time:Z

Vi f ðr2Þd3r2 ¼
Z

d3r2
ðr2i � r1iÞ2

Dt
wðr2; r1;DtÞ o

or2i
f ðr2Þjr2¼r1

¼ 2D0
o

or2i
f ðr2Þjr2¼r1

;

ð14Þ

using hðr2i � r1iÞ2i ¼ 2D0Dt at short times. This integration result
proves by definition the delta-functional form given in Eq. (13). The
Gaussian form of the diffusion propagator at short times determines
the actual representation of the derivative of the delta-function.

The velocity autocorrelation function, hviðt1Þvjðt2Þi, can now be
calculated in the following way, first for t2 � t1 > 0:

hviðt1Þvjðt2Þi ¼
Z

V
Viðr1 � r0Þwðr2; r1; t2 � t1ÞVjðr3 � r2Þ

� dr0

V
dr1 dr2 dr3: ð15Þ

By introducing a pore shape function mðrÞ which is unity inside the
pore and zero outside, the integration limits in Eq. (15) can be ex-
tended to the whole space:

hviðt1Þvjðt2Þi ¼
1
V

Z
Viðr1 � r0Þwðr2; r1; t2 � t1ÞVjðr3 � r2Þ

� mðr0Þ � � � mðr3Þdr0 dr1 dr2 dr3

¼ �4D2
0

V

Z
d3ðr1 � r0Þwðr2; r1; t2 � t1Þd3ðr3 � r2Þ

� o

or0i
mðr0Þmðr1Þmðr2Þ

o

or3j
mðr3Þdr0 dr1 dr2 dr3:

ð16Þ

The second expression here is obtained via integration by parts. The
gradient of mðrÞ is zero everywhere except at the surface, where it
has a contribution only from the component parallel to the surface
normal:

o

ori
mðrÞ ¼ êi � $mðrÞ ¼ niðrÞ

Z
X

dS1d
3ðr1 � rÞ; ð17Þ

where êi is a unit vector along the direction i and niðrÞ is the ith
component of the local outward normal vector n̂ðrÞ. Therefore Eq.
(16) can be reduced to a double surface integral, and the second-or-
der velocity cumulant takes the form

uð2Þij ðt1; t2Þ ¼ 2D0dijdðt2 � t1Þ

� D2
0

V

Z
X

niðr1Þwðr2; r1; jt2 � t1jÞnjðr2ÞdS1 dS2: ð18Þ

In obtaining Eq. (18) it was used that the bulk mean velocity, hviðtÞi,
is zero for diffusion within any closed geometry. Eq. (18) can also be
obtained by a perturbative account for the diffusion-sensitizing gra-
dients in the Bloch–Torrey equation. This method is outlined in
Appendix A, along with another method based directly on the diffu-
sion equation. The first term in Eq. (18) comes from the case
t2 � t1 < Dt, for which most spins do not sense the boundary but
only the bulk medium. The second term is due to the boundary. It
is equal to the average probability for molecules to travel between
two surface points, while the surface orientation at these points de-
fines the relevant component of the diffusion tensor. This, in partic-
ular, means that it is sufficient to know the diffusion propagator, w,
at the pore surface in order to find any non-trivial diffusion effects.
3. Results

Application of Eq. (18) is illustrated by a calculation of the dif-
fusion-weighted signal in three geometries, for which the diffusion
propagator is known analytically: diffusion between two parallel
planes (denoted below as a slab), within a cylinder and a sphere.
Three different pulse sequences are considered. First, we focus on
the two limiting cases of the Stejskal–Tanner pulse sequence,
(Fig. 1): the limit of narrow pulses, d! 0 and g !1 such that
gd is constant (narrow pulse approximation), and the limit
d ¼ D ¼ TE=2, where TE is the echo time (Hahn spin–echo). Second,
we consider a realistic measurement sequence: a spectroscopic
PRESS volume selection dual spin–echo diffusion weighting se-
quence with eddy current compensation according to Ref. [9],
Fig. 2. In the following, this sequence will be referred to as the
PRESS sequence.

3.1. Slab

As the first example we consider ADC from a slab of a homoge-
neous medium restricted by two parallel, impermeable planes
placed at x ¼ �R, orthogonal to the x-axis. Diffusion in the y and
z-direction is free, rendering the system effectively one-dimen-
sional. The propagator for diffusion between two walls as an
expansion in eigenfunctions is given in Appendix B. The second-or-
der velocity cumulant is diagonal with the entries

uð2Þxx ¼ 2D0dðt2 � t1Þ �
D2

0

R
½wðR;R; t2 � t1Þ � wð�R;R; t2 � t1Þ� ð19Þ

¼ 2D0dðt2 � t1Þ �
2D2

0

R2

X1
n¼0

e� nþ1
2ð Þ2D0p2ðt2�t1Þ=R2

ð20Þ

uð2Þyy ¼ uð2Þzz ¼ 2D0dðt2 � t1Þ: ð21Þ

In the limit of short times,
ffiffiffiffiffiffiffiffiffi
D0D
p

	 R, wð�R;RÞ is negligible, and Eq.
(19) agrees with the result in Ref. [5], Eq. 21, obtained using the
method of mirror images.

By substitution of Eq. (20) into Eq. (8) we obtain an expression
for the ADC along the x-axis which is valid for arbitrary pulse se-
quences. In the narrow pulse approximation, the ADC in the x-
direction becomes

D ¼ 2D0

p4a2

X1
n¼0

1

nþ 1
2

� �4 1� e� nþ1
2ð Þ2p2a2

� �
; ð22Þ

where a ¼
ffiffiffiffiffiffiffiffiffi
D0D
p

=R. In the derivation, we used that b ¼ g2d2D andP1
n¼0ðnþ 1=2Þ�2 ¼ p2=2. In the narrow pulse approximation, the

exact signal is the Fourier transform of the diffusion propagator
[10], also known as the characteristic function of the displacement



Fig. 2. Spectroscopic PRESS volume selection dual SE diffusion weighting sequence.
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probability density function, and Eq. (22) coincides with the linear
term in b in the expansion of the exact signal, given in Ref. [11].

For the Hahn spin–echo, the ADC takes the form

D ¼ 24D0

p6a4

X1
n¼0

1

nþ 1
2

� �6 1� 3� 4e�
1
2 nþ1

2ð Þ2p2a2 þ e� nþ1
2ð Þ2p2a2

nþ 1
2

� �2p2a2

2
4

3
5; ð23Þ

where a ¼
ffiffiffiffiffiffiffiffiffiffiffi
D0TE
p

=R and b ¼ g2T3
E=12. Eq. (23) coincides with a sim-

ilar expression in Ref. [7], obtained by calculating two volume
integrals.

For the PRESS sequence we imported the exact shape of the
gradient from the scanner and determined the ADC in the x-direc-
tion from Eqs. (8) and (20) numerically. The gradient was im-
ported for a number of different b-values and different diffusion
times T. To obtain a continuous ADC curve as a function of a,
we used the gradient for one specific time and stretched it in
such a way that the b-value remained the same when varying
time. This is a good approximation to the exact gradient, although
the time intervals between the two pairs of diffusion gradients in
reality remain fixed. The apparent diffusion coefficients for the
three different pulse sequences are shown in Fig. 3 as a function
of a. The size of the slab is fixed at R ¼ 10 lm, the b-value at
b ¼ 1:1 ms=lm2 and the diffusion coefficient at D0 ¼ 2 lm2=ms.
We used this diffusion coefficient as a good approximation to
the value inside neuronal fibers, as discussed below in Section
4.2.
Fig. 3. The ADC as a function of a for diffusion between two reflecting walls. The
thick dashed black line represents the Hahn spin–echo, the thick solid black line
represents the narrow pulses and the thick solid grey line represents the PRESS
pulse sequence. The curves are plotted for values of a between 0.5 and 3. The thin
lines represent the short-time behavior for each of the pulse sequences, Eq. (1),
using the same line style as above. The figure inserted in the right corner shows the
same plots in double-log scales for a > 1.
3.2. Cylinder

The infinite cylinder of radius R is effectively a two-dimensional
system. The diffusion propagator is given in Appendix B.

The second-order velocity cumulant is diagonal as for the slab.
The diagonal entries are given by

uð2Þxx ¼ uð2Þyy ¼ 2D0dðt2 � t1Þ �
2D2

0

R2

X
m

f2
m

f2
m � 1

; e�D0f2
mðt2�t1Þ=R2 ð24Þ

uð2Þzz ¼ 2D0dðt2 � t1Þ; ð25Þ

where fm are the roots of the derivative of the Bessel function J01.
The gradient is now applied in a direction orthogonal to the cyl-

inder axis, e.g., along x. Combining Eq. (8) with Eq. (24) yields

D ¼ 2D0

a2

X
m

1
f4

m � f2
m

ð1� e�f2
ma2 Þ ð26Þ

for the narrow pulse approximation and

D ¼ 24D0

a4

X
m

1
f6

m � f4
m

1� 3� 4e�1
2f

2
ma2 þ e�f2

ma2

f2
ma2

 !
; ð27Þ

for the Hahn spin–echo. In obtaining Eqs. (26) and (27) it was used
that

P
mðf

2
m � 1Þ�1 ¼ 1=2 [7,12]. Again the narrow pulse result, Eq.

(26), is identical to the linear term in b in the expansion of the exact
signal from Ref. [11], and the Hahn spin–echo result, Eq. (27), coin-
cides with Ref. [7].

The apparent diffusion coefficient for the three pulse sequences
is shown in Fig. 4 as a function of a, with parameters equal to those
used for the slab.

3.3. Sphere

For the sphere, the second-order velocity cumulant is diagonal.
The diagonal entries are equal and given by

uð2Þxx ¼ uð2Þyy ¼ uð2Þzz

¼ 2D0dðt2 � t1Þ �
2D2

0

R2

X
m

n2
m

n2
m � 2

e�D0b2
mðt2�t1Þ=R2

; ð28Þ

where nm are the roots of the derivative of the spherical Bessel func-
tions j01 and R is the radius of the sphere.
Fig. 4. The ADC as a function of a for diffusion in an infinite cylinder. The line style
is the same as in Fig. 3. The short-time behavior (thin lines) is given by Eq. (1). The
inserted figure shows the same plots in double-log scales.



Fig. 5. The ADC as a function of a for diffusion in a sphere. The line style is the same
as in Fig. 3. The short-time behavior (thin lines) is given by Eq. (1). The inserted
figure shows the same plots in double-log scales.
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The gradient is applied along the x-axis. Combining Eqs. (8) and
(28) yields

D ¼ 2D0

a2

X
m

1
n4

m � 2n2
m

ð1� e�n2
ma2 Þ ð29Þ

for the narrow pulse approximation and

D ¼ 24D0

a4

X
m

1
n6

m � 2n4
m

1� 3� 4e�1
2n

2
ma2 þ e�n2

ma2

n2
ma2

 !
; ð30Þ

for the Hahn spin–echo. Here we used the expressionP
mðn

2
m � 2Þ�1 ¼ 1=2 [7,12]. Again the narrow pulse result, Eq.

(26), coincides with the linear term in b in the expansion of the ex-
act signal given in Ref. [11], and the Hahn spin–echo result, Eq. (27),
coincides with Ref. [7].

For the PRESS sequence, the ADC in the x-direction is found by
numerical integration of Eqs. (8), (28). In Fig. 5 it is shown as a
function of a, together with ADC for the narrow pulse approxima-
tion and the Hahn spin–echo with parameters equal to those used
for the slab and cylinder.

4. Discussion

The main result of this paper is stated in Eq. (18), which relates
the second-order velocity cumulant to the diffusion propagator
evaluated at the boundary. The velocity cumulant consists of a con-
tribution from free diffusion in the bulk medium and a double sur-
face integral of the diffusion propagator, w. This demonstrates that
the second-order velocity cumulant is uniquely defined by the
shape of the pore. The conventional expression for the ADC [7,2]
includes the integral over the whole pore volume:

D ¼ 1
2bV

Z T

0
dt1 dt2

Z
V

dr1 dr2x1x2wðr2; r1; t2 � t1Þgðt1Þgðt2Þ: ð31Þ

For a given boundary condition, the diffusion propagator is uniquely
defined via the solution to the diffusion equation. Hence Eq. (18)
does not imply a reduction of the information content reflected in
the ADC, but only expresses it in a condensed way.

The fact that the expression in Eq. (18) is reduced to a double
surface integral compared to the double volume integral in Eq.
(31) simplifies analytical calculation of the ADC, and reduces com-
putation time in numerical simulations. The two representations
are related via the diffusion equation and the partial volume inte-
gration (see Appendix A).

4.1. Dependence of ADC on pulse sequence and pore geometry

The apparent diffusion coefficient is shown as a function of a for
the geometries and pulse sequences considered in Figs. 3–5. The a-
range covered in the figures corresponds to diffusion times varying
from 0 to 450 ms.

In the limiting case of a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D0T=R2

q
! 0, the molecules do not

encounter the restricting boundaries and therefore D ¼ D0. In the
case of large a, ADC goes toward zero, as the molecules cannot ex-
plore distances larger than the size of the object that restricts their
diffusion. Hence the mean square displacement ceases to grow
with time.

For all three geometries, the ADC curves for the PRESS and Hahn
spin–echo sequences are hardly distinguishable. The maximum
difference between them occurs for a � 2 and is close to
10�2 lm2/ms (corresponding to 
10%). The ADC for the narrow
pulse approximation is clearly distinguishable from the other
two pulse sequences, however, the largest difference, found for
0:5 < a < 1, is only �0.1 lm2/ms (corresponding to 
13%).

The low sensitivity of ADC to the details of the pulse sequence is
fortunate for further investigation of diffusion-weighted MRI in
terms of microstructure, as the practical advantages of clinical se-
quences can be combined with the theoretical convenience of the
narrow pulse approximation and Hahn spin–echo, as far as the
ADC is concerned.

The results presented in Figs. 3–5 agree well with the short-
time behavior of the ADC, given by Eq. (1). For the narrow pulses
and the Hahn spin–echo the coefficient c in Eq. (1) is given by

cNP ¼
4

3
ffiffiffiffi
p
p

d
ð32Þ

and

cSE ¼
32

35
ffiffiffiffiffiffi
2p
p

d
2
ffiffiffi
2
p
� 1

	 

; ð33Þ

respectively [1,3], where d is the spatial dimension. For diffusion
between two walls, the coefficient takes the following form for an
arbitrary pulse sequence:

c1d ¼
1

2b
ffiffiffiffiffiffiffi
pT
p

Z T

0
dt1

Z T

0
dt2

Gðt1ÞGðt2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jt2 � t1j

p : ð34Þ

The substitution t2 ¼ t1 þ y2 can be helpful for numerical calcula-
tions. The short-time ADC for diffusion in a slab deviates from the
exact ADC with less than 1% up to a � 0:7 for all three pulse se-
quences shown in Fig. 3. This extends the limit, a < 0:3, found by
Sukstanskii and colleagues, Ref. [13], below which the two regions
adjacent to the walls can be considered independent. For the cylin-
der and the sphere, the short-time ADC is compared to the exact
ADC for the narrow gradient pulses and the Hahn spin–echo se-
quence, resulting in deviations within 1% up to a � 0:2 and
a � 0:1, respectively.

Fig. 6 shows the fractional anisotropy, FA, for the slab and cyl-
inder as a function of a. FA is given by

FA ¼
ffiffiffi
3
p
ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP3
i¼1ðki � kÞ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP3

i¼1k
2
i

q ; ð35Þ

where ki are the eigenvalues of the ADC tensor and k is the mean
diffusivity (one third of the trace of the ADC tensor).

For the cylinder, the FA is zero in the limit a! 0 (perfectly iso-
tropic diffusion) and 1 in the limit a!1, which corresponds to an
infinitely narrow cylinder. For diffusion between two planes FA is



a

b

Fig. 6. Fractional anisotropy as a function of a �
ffiffiffiffiffiffiffiffiffi
D0T
p

=R for diffusion (a) between
two walls and (b) in an infinite cylinder. The solid black line represents the narrow
pulse approximation, the dashed black line represents the Hahn spin–echo and the
solid grey line represents the PRESS pulse sequence.
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also zero for a! 0 but 1=
ffiffiffi
2
p

for a!1. These limits are seen in
Fig. 6. The FA for the Hahn spin–echo and the PRESS sequence
are nearly identical. The largest deviation between the two curves
is found at a � 2, corresponding to the time where the diffusion
length of the spins equals the diameter of the objects. For the nar-
row pulse approximation, the limiting regimes mentioned above is
reached later than for the other two pulse sequences. For the
sphere, diffusion is perfectly isotropic and FA equals unity for all
values of a.

4.2. Perspectives for the microstructural study of white matter

The infinitely long cylinder can be used as a reasonable model
for fibers and dendrites [14–17]. We now consider the diffusion-
weighted signal in the direction orthogonal to fibers and assume
that it can be written as a sum of the intra- and extracellular sig-
nals, where both signal contributions are described by the cumu-
lant expansion. Then the apparent diffusion coefficient can be
found as

D ¼ w1D1 þw2D2; ð36Þ

with w1 and w2 being the volume fractions of the intra- and extra-
axonal compartments, respectively. Neglecting water in the myelin
layers, which practically do not contribute to the signal due to the
fast transverse relaxation, the normalized volume fractions are esti-
mated as approximately w1 ¼ 0:6 and w2 ¼ 0:4 in frontal white
matter in humans and in rat trigeminal nerve [18,19].

The results presented in Fig. 4 help to relate D1 to the fiber size
and the bulk diffusion coefficient inside the axons. Assuming that
the ADC derived from the fiber signal is known with an uncertainty
of 0.1 lm2/ms, the fiber radius could be determined within 10–20%
in a range of a-values from 0.3 to 1.7, with the best precision
around a ¼ 0:9. For fibers with a radius of 10 lm this requirement
means that the diffusion time should lie within the interval 5 to
150 ms, which is fulfilled in most experimental protocols.

For large values of a, the ADC-curve flattens out and becomes
less sensitive to the radius. In the human corpus callosum, the fiber
radius, R, varies between 
0.3 lm and 
5 lm, with R = 1 lm
occurring most frequently, [20]. This radius is used in the following
estimates. In order to be sensitive to this radius, the diffusion time
in the experiment should be smaller than 1.5 ms, which is pres-
ently not achievable in scanners used in clinic settings. In Ref.
[21], Does and colleagues experimentally obtained such short dif-
fusion times in an animal scanner using oscillating gradients. In
this paper they found that the ‘‘long diffusion time” limit, where
the ADC becomes almost insensitive to a, starts around a 
 2—3,
in agreement with the discussion above.

For a typical diffusion time of 80 ms, which we use in the esti-
mations below, and a bulk diffusion coefficient of D0 ¼ 2 lm2=ms
in the intraaxonal space [14,15,22,23], a � 13. For such a large a-
value, D1 is negligible (Fig. 4) and the ADC measured orthogonal
to the fibers is dominated by the extraaxonal space, according to
Eq. (36). The precise value of the intraaxonal diffusion constant is
thus irrelevant for diffusion in the transverse direction, but indis-
pensable for understanding the diffusion in the direction parallel
to the fibers.

This reduction in the number of free parameters enables an esti-
mate of the extracellular diffusion coefficient in the direction
orthogonal to the fibers, which at long times is described by the
tortuosity, k, defined through D ¼ D0=k

2, where D0 ¼ 3 lm2=ms is
the true diffusion constant of unrestricted water. We estimate
the extraaxonal tortuosity in white matter using experimental data
reported in Ref. [24]. The ADC was measured to be 2:0 lm2=ms
parallel to myelinated fibers and 0:3 lm2=ms orthogonal to the fi-
bers in corpus callosum for a diffusion time of 80 ms and an echo
time of 112 ms.

The result for the extraaxonal tortuosity is k ¼ 2:0. However,
to make a proper estimate of k, the differences in the T2 relaxa-
tion in the intra- and extracellular compartments should be ac-
counted for when determining the volume fractions. Attempts
have been made to find corresponding T2 values by modelling
the T2 weighted signal with a three-pool model and associating
the two largest T2 values with the intra- and extracellular com-
partments [18,19]. For frontal white matter in children
T2;intra ¼ 40 ms and T2;extra ¼ 130 ms has been measured [18].
Using these T2 values we find k ¼ 2:8. The value of 2.8 is, how-
ever, not necessarily accurate for diffusion in human corpus callo-
sum, since the T2 values and volume fractions in frontal white
matter might differ significantly from those in corpus callosum.
Furthermore, the assignment of T2 components, found from the
three-pool model, to myelin, intra- and extracellular space lacks
further independent validation. The extracellular tortuosity values
can be compared to the tortuosity of 1.7 measured in rat corpus
callosum [25,26]. Due to differences in cytoarchitecture across
species, this number might differ in humans. This discussion
demonstrates, that a better knowledge of the intra- and extracel-
lular T2 values, as well as the corresponding volume fractions, is
needed for more reliable estimates of the tortuosity. This is in line
with the conclusion from Ref. [27], stating that transverse relax-
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ation should ultimately be accounted for in models of grey
matter.

4.3. Limitations and extensions of the model

The expression for the ADC given by Eqs. (8) and (18) can be ap-
plied to an arbitrary pulse sequence and an arbitrary closed geom-
etry with boundaries that are impermeable for diffusing spins. An
open pore geometry, however, can be treated as the closed geom-
etry with remote boundaries.

The effect of finite permeability of cellular membranes is not ta-
ken into account. It can be estimated in terms of a characteristic
time, D0=j2, where j is the permeability, see Refs. [13,28] for a more
detailed discussion. The membrane is well approximated as imper-
meable as long as this time is longer than the diffusion time. For a
typical permeability of 10�2 � 10�1 lm=ms of biological mem-
branes [28], this requirement is usually fulfilled in experiments.

The effect of surface relaxation has not been incorporated when
deriving the expressions for the ADC. For t ! 0 it gives rise to
terms which are proportional to time [2] and hence are smaller
than the leading short-time term in the ADC of order

ffiffiffiffiffiffi
Dt
p

. Surface
relaxation is an important issue for NMR experiments in porous
media. Its role in biological samples, however, is still poorly
understood.

4.4. ADC and the diffusion-weighted signal

In the present paper, we have focused on the apparent diffusion
coefficient, which is the most frequently used quantity to charac-
terize diffusion and has proven to be useful for detecting cellular
changes [29].

A standard estimate of the ADC is obtained from the diffusion-
weighted signal, S, as the slope of ln SðbÞ for small b-values. How-
ever, as mentioned above, the ADC term, Eq. (2), is the lowest order
term in the cumulant expansion of the signal and the quality of
approximating the whole signal with the first term only should
be considered in each particular case; the applicability depends
on the desired accuracy as well as b-values and tissue properties.
In a previous study [30], we considered theoretically the cumulant
expansion for small a-values and found that for diffusion between
two planes measured with the Stejskal–Tanner pulse sequence in
the narrow pulse regime, two terms in the cumulant expansion
are sufficient to describe the signal for practically relevant b-val-
ues. In Refs. [31,32] Stepis�nik studied the cumulant expansion for
large a-values, and concluded that higher order terms bring only
small corrections to the Gaussian phase approximation, which is
equivalent to keeping only the ADC term in the cumulant
expansion.

The formalism developed in the present work can be applied
beyond the ADC term to study higher order velocity cumulants
as well. A more generally applicable approach is to calculate the
exact signal using the matrix solutions to the Bloch–Torrey equa-
tion, as developed by Callaghan and Barzykin [33,34]. These for-
malisms can also be applied with an arbitrary gradient form;
however, a complicated analytical structure with products of
high-dimensional matrices may render this approach better suited
for precise numerical computations than for analytical insight.
5. Conclusion

In this paper, we have considered the apparent diffusion coeffi-
cient (ADC) for an arbitrary closed geometry. For a given pulse se-
quence, the ADC can be determined from the second-order velocity
cumulant, which we show to be expressible as a double surface
integral of the probability to diffuse between two surface points
(Eq. (18)). This demonstrates explicitly that the second-order
velocity cumulant is uniquely defined by the shape of the restrict-
ing object. This insight simplifies analytical calculation of the ADC,
and can reduce computation time of numerical simulations.

The applicability of Eq. (18) is demonstrated for diffusion within
three geometries: a slab, a cylinder and a sphere. For each geome-
try the ADC was calculated for the Hahn spin–echo pulse sequence,
the narrow pulse approximation of the Stejskal–Tanner pulse se-
quence and for a more complex pulse sequence with slice selection
gradient and eddy current compensation (PRESS sequence) [9].
Only small differences were found between the ADCs for the three
pulse sequences. In particular, the Hahn spin–echo and PRESS se-
quence gave almost identical results. This can simplify interpreta-
tion of experimental data across pulse sequences.

Finally we have discussed the possibility of gaining microscopic
information of living tissue from the derived expressions for the
ADC in simple geometries. By using cylinders to model neuronal fi-
bers, we found that, for realistic diffusion times in human scanners,
the ADC measured orthogonal to the fibers in the corpus callosum
is strongly dominated by extraaxonal diffusion. Furthermore, esti-
mation of biological parameters, such as tortuosity and fiber ra-
dius, depends significantly on the differences in the transverse
relaxation in the intra- and extraaxonal compartments, of which
present knowledge is limited.
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Appendix A

An alternative way to obtain Eq. (18) is to solve the Bloch–Tor-
rey equation perturbatively, with the amplitude of the diffusion-
weighting gradient as the small parameter. This is achieved by
expanding the Green’s function, W, of this equation as
W ¼ W0 þW1 þW2 þ . . ., where Wn is proportional to gn and
W0 ¼ w. The signal to the nth order in g, Sn, can now be found by
integrating the Greens’ function,

Sn ¼
Z Xn

i¼0

Wiðr; r0Þ
drdr0

V
: ðA1Þ

A non-trivial result is obtained in the second order:

ln S2 ¼ �
1

2V

Z T

0
dt2

Z T

0
dt1

Z
V

dr1dr2gðt1Þ � r1

� wðr2; r1; jt2 � t1jÞgðt2Þ � r2; ðA2Þ

which can be brought to the form of Eq. (8) by partial integration.
Instead of using the velocity operator defined in Section 2.2, the

velocity autocorrelation function can also be found by differentia-
tion of the position autocorrelation function

hviðt1Þvjðt2Þi ¼
d

dt1

d
dt2
hriðt1Þrjðt2Þi: ðA3Þ

Consider the function fij defined for t1 < t2 by

fijðt2 � t1Þ � hriðt1Þrjðt2Þi ¼
1
V

Z
V

r1ir2jwðr2; r1; t2 � t1Þdr1dr2: ðA4Þ

Eq. (A3) is then written in the form

hviðt1Þvjðt2Þi ¼ �Hðt2 � t1Þ€f ijðt2 � t1Þ �Hðt1 � t2Þ€f ijðt1 � t2Þ

� 2dðt2 � t1Þ _f ijð0Þ; ðA5Þ
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where H is the Heaviside step function and dots denote the time
derivative. By replacing the time derivative of the diffusion propa-
gator with D0r2wðr2; r1; t2 � t1Þ according to the diffusion equation,
Eq. (10), using Green’s second theorem and the boundary condition,
Eq. (12), €f ij can be identified with the second term in Eq. (18) and
_f ijð0Þ can be found by Gauss’ theorem,

_f ijð0Þ ¼ �D0dij: ðA6Þ

Using Eq. (A5), we finally retrieve Eq. (18).

Appendix B

Standard Sturm–Liouville theory allows the solution to partial
differential equations to be expanded in orthogonal eigenfunctions
determined by the relevant boundary conditions, see for example
Ref. [35], chapt. 9.

For diffusion between parallel planes, the expansion in eigen-
functions for the diffusion propagator takes the form [10]

wðx; x0; t2 � t1Þ

¼ 1
2R
þ 1

R

X1
n¼1

exp � n2
nD0ðt2 � t1Þ

R2

 !
cos

nnx
R

� �
cos

nnx0

R

� �

þ 1
R

X1
n¼0

exp � f2
nD0ðt2 � t1Þ

R2

 !
sin

fnx
R

� �
sin

fnx0

R

� �
; ðA7Þ

where t1 < t2 and where the eigenvalues nn and fn are determined
by sinðnnÞ ¼ 0 and cosðfnÞ ¼ 0. In the y- and z-direction the diffusion
propagator is Gaussian.

In polar coordinates ðr; h; zÞ the diffusion propagator for diffu-
sion inside an infinite cylinder takes the form [11]

wðr2; r1; t2 � t1Þ ¼
1

pR2 þ
X
n>0

X
m

2Jnðfmnr1=RÞJnðfmnr2=RÞ
pR2ð1� n2=f2

mnÞðJnðfmnÞÞ2

� ðcos nh1 cos nh2 þ sin nh1 sin nh2Þ

� e�D0f2
mnðt2�t1Þ=R2

; ðA8Þ

where Jn are the Bessel functions and fmn is the mth root of J0n. In the
z-direction the diffusion propagator is Gaussian.

For the sphere, the diffusion propagator is found in spherical
coordinates to be

wðr2; r1; t2 � t1Þ ¼
1

4pR3 þ
1
R3

X
n>0

X
m

ð2nþ 1Þ
2p

� jnðnmnr1=RÞjnðnmnr2=RÞPnðcos h1ÞPnðcos h2Þ

� ðj2
nðnmnÞ � jn�1ðnmnÞjnþ1ðnmnÞÞ�1 � e�D0n2

mnðt2�t1Þ=R2
;

ðA9Þ

where jn are the spherical Bessel functions and nmn is the m’th root
of j0n.
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